

7E7081

B.Tech. VII- Semester (Main&Back) Examination, Nov. - 2019 Electronics And Comm. Engg. 7EC1A Antenna And Wave Propagation

Time: 3 Hours

Maximum Marks: 80

(4)

www.ersahilkagyan.com Min. Passing Marks : 26

Instructions to Candidates:.

Attempt any five questions, selecting one question from each unit. All Questions carry equal marks. (Schematic diagrams/must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly). Units of quantities used/calculated must be stated clearly."

UNIT - I

- Describe ideal dipole and short dipole antenna. 1. a) (6) **b**) Describe the difference between directivity and gain. Are they the same in any case?
 - Prove that the radiated power of quarter wave monopole is $P_T = 36.5 I_{\text{eff}}^2$. c)

(OR)

- Draw the equivalent circuit of antenna. Also define the polarisation, antenna. a) front to back ratio (FBR), Antenna band width. (8)
 - Determine the maximum effective aperture and directivity of a short dipole b) supposed to be operated at f = 450 MHz. (8)

UNIT - II

- What are the advantages of array antenna? Describing principle of pattern 2. a) multiplication and sketch the radiation pattern of a three - element array separated at $\frac{1}{2}$. (8)
 - Calculate the directivity a broad side stacked antenna of height 10.5 m and length 21 m in dB, if operating frequency f = 3.5 GHz. (8)

(OR)

- Distinguish between endfire and broadside arrays. Show that array of two isotropic sources fed with equal amplitudes and opposite phases acts as an end - fire array. (8)
 - Describe and draw the radiation pattern of 4-isotropic sources of equal amplitudes and phases in broadside and end-fire arrays. (8)

UNIT - III

3	(a)	Compare half - wave dipole, folded dipole antenna and V - dipole antennas in the terms of designs and radiation characteristics.
, ,	b)	What are the characteristics features of circular end square loop antennas?
		Write the expressions for their far fields.
		(OR)
3.	a)	Describe the principle of operation of Yagi - Uda antenna. Explain its properties with reference to directivity and bandwidth. (8)
	b)	Describe the design procedure of rectangular patch antenna with a suitable example. Write its applications. (8)
		UNIT - IV
4.	a)	Describe the effect of frequency, earth constant and earth curvature on surface wave propagation. (8)
•	b)	Describe the troposphere and troposphere wave propagation. Also justify the statement "Microwave communication is only due to tropospheric propagation". (8)
- Carlo	267	(OR)
4.	a)	Define the terms surface and elevated ducts and duct gradient. Also describe duct propagation. http://www.rtuonline.com (8)
	b)	Show that for space wave propagation the filed intensity at the receiver is
		given by $E_R = \frac{88\sqrt{P}h_i hr}{\lambda \alpha^2} \text{ v/m}$. (8)
		UNIT - V
i. •	a)	Describe the ionosphere reflection of radio waves. Derive an expression for critical frequency of a reflecting layer in terms of its ionization density. (8)
	b)	Describe D,E,F, and G layers of the ionosphere. (4)
	c)	Estimate the maximum electron density of an ionosphere layer for a critical frequency 5.5 GHz. (4)
		(OR)
	a)	Write notes on virtual height, skip distance, maximum usable frequency, and optimum working frequency. (8)
85	b)	For a mobile communication over a height of 120 km via ionosphere layer with Nmax = 2.22×10 ⁵ electrons/m ³ , the maximum frequency estimated to be

is 6.5 KHz. Find the optimum working frequency, critical frequency, and

elevation angle of beam and path range.